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Abstract. We consider an approach to convert vector variational inequalities into an equiv-
alent scalar variational inequality problem with a set-valued cost mapping. Being based on
this property, we give an equivalence result between weak and strong solutions of set-valued
vector variational inequalities and suggest a new gap function for vector variational inequal-
ities. Additional examples of applications in vector optimization, vector network equilibrium
and vector migration equilibrium problems are also given.
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1. Introduction

Vector optimization, vector variational inequality, and vector equilibrium
problems are rather natural extensions of the corresponding scalar ana-
logues. In fact, the main difference is in defining the estimation space,
which need not be the real line. Therefore, one has to introduce certain
ordering in this space. Usually, such an ordering is induced by a con-
vex cone and is not complete in general. This fact leads to many diffi-
culties in determining concepts of solution, monotonicity, convexity etc,
and establishing existence results of solutions; see e.g. [4, 9, 11] and ref-
erences therein. In studying vector problems, many efforts were tradition-
ally concentrated on scalarization approaches, which enable one to replace
the vector problem under consideration with an equivalent scalar problem.
Usually, this scalar problem is determined by rather complicated relations
in comparison with those in the initial problem.

This is the case for example for optimization problems; see e.g. [9, 11].
At the same time, it appears that vector variational inequalities admit a
simpler equivalent scalar representation. Moreover, the scalar problem does
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not contain explicit parameters. Being based on this property, we establish
an equivalence result between weak and strong solutions and present a new
gap function for vector variational inequalities. We also give examples of
applications of this approach for vector optimization, vector network equi-
librium, and vector migration equilibrium problems.

2. A Scalarization Approach

Let X be a real Banach space and X′ its topological conjugate. Given an
element f ∈X′, 〈f, x〉 denotes the value of f at x∈X, so that if X is a Hil-
bert space, then X=X′ and 〈f, x〉 denotes the scalar product in X. Let Y
be a finite-dimensional Euclidean space with a partial order �C , induced
by a convex, closed and solid cone C. That is, for y ′, y ′′ ∈ Y, y ′ �C y

′′ is
equivalent to y ′–y ′′ ∈C and y ′ �intC y

′′ is equivalent to y ′ − y ′′ ∈ intC. Let
K be a nonempty, convex and closed subset of X and T :K → 2L(X,Y ) a
set-valued mapping from K into the space of all linear continuous opera-
tors L(X,Y ). Then one can define the vector variational inequality problem
(VVI for short) which is to find an element x∗ ∈K such that

∀y ∈K, ∃t∗ ∈T (x∗): t∗(y−x∗)�intC 0. (1)

This problem and its modifications and extensitons are investigated
extensively both in finite- and infinite-dimensional spaces; see e.g. [4, 6] and
references therein. Since the element t∗ in (1) may depend on y, this prob-
lem corresponds to a weak concept of solution, whereas one can define a
strong solution to VVI which is an element x∗ ∈K such that

∃t∗ ∈T (x∗) : t∗(y−x∗)�intC 0 ∀y ∈K; (2)

i.e. t∗ is now independent of y. We denote by Kw and Ks the solution
sets of problems (1) and (2), respectively. Clearly, each strong solution is a
weak solution of VVI, i.e., Ks ⊆Kw, but the reverse assertion is not true in
general. We will obtain this assertion under certain additional assumptions
with the help of a scalarization approach.

Throughout this section, we set Y =Rm and

C=Rm+ ={y ∈Rm|yi �0 i=1, . . . ,m}.
Then

T (x)=
m∏

i=1

Ti(x), where Ti :K→2X
′
.

We now define the set-valued mapping F :K→2X
′

as follows:
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F(x)= conv{Ti(x)}i=1,... ,m. (3)

Therefore, we can now consider two kinds of the scalar variational inequal-
ity problem (VI for short): Find x∗ ∈K such that

∀y ∈K, ∃f ∗ ∈F(x∗) : 〈f ∗, y−x∗〉�0; (4)

and find x∗ ∈K such that

∃f ∗ ∈F(x∗) : 〈f ∗, y−x∗〉�0 ∀y ∈K; (5)

which correspond to the weak and strong concepts of solution, respectively.
However, these problems become equivalent under rather weak assump-
tions. First we recall the well-known Kneser, minimax theorem [7].

PROPOSITION 1. Let A be a nonempty convex set in a vector space and
let B be a nonempty compact convex set in a Hausdorff topological vector
space. Suppose that f is a real-valued function on A×B such that for each
fixed a ∈A,f (a, ·) is lower semicontinuous and convex on B, and for each
fixed b∈B,f (·, b) is concave on A. Then,

min
b∈B

sup
a∈A

f (a, b)= sup
a∈A

min
b∈B

f (a, b).

The equivalence result can be stated as follows.

LEMMA 1. Suppose that, for each x ∈K, Ti(x) is nonempty, convex and
weakly* compact for i=1, . . . ,m. Then problems (4) and (5) are equivalent.

Proof. If Ti(x), i=1, . . . ,m are nonempty, convex and weakly* compact,
so is F(x). If x∗ ∈K solves (4), then we have

sup
a∈A

min
b∈B

f (a, b)�0,

where f (a, b)=〈b, x∗ −a〉, A=K, and B=F(x∗). Using now Proposition
1 gives

min
b∈F(x∗)

sup
a∈K

〈b, x∗ −a〉=min
b∈B

sup
a∈A

f (a, b)�0.

Hence, x∗ solves (5), and we obtain the implication (4)⇒ (5). The reverse
implication is clearly true by definition, and the result follows.

We denote by K∗ the solution set of problem (5).
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THEOREM 1. Suppose that, for each x∈K, Ti(x) is nonempty, convex and
weakly* compact for i = 1, . . . ,m. Then problems (1), (2), (4), and (5) are
equivalent.

Proof. Clearly, (2) implies (1). If x∗ ∈K solves (1), then, for each y ∈K,
we have t∗(y− x∗) /∈ −intRm+ for some t∗ ∈ T (x∗), i.e., for some i, there is
t∗i ∈ Ti(x∗) such that 〈t∗i , y − x∗〉 � 0, hence 〈f ∗, y − x∗〉 � 0 with f ∗ = t∗i
∈F(x∗) and (1) implies (4). By Lemma 1, problems (4) and (5) are equiv-
alent. Suppose that x∗ ∈ K solves (5). Then there exists an element f ∗

∈F(x∗) such that

〈f ∗, y−x∗〉�0 ∀y ∈K.

Due to (3), it means that there exist a subset I ⊆{1, . . . ,m} and elements
t∗i ∈Ti(x∗), i ∈ I such that

f ∗ ∈ conv{t∗i }i∈I .

Hence, for each y ∈K, there exists at least one index i ∈ I such that

〈t∗i , y−x∗〉�0.

Choose arbitrary elements t∗j ∈Tj (x∗), j /∈ I and set t∗ = (t∗s )s=1,... ,m∈T (x∗).
It follows that

t∗(y−x∗)�intC 0 ∀y ∈K,

i.e. x∗ solves problem (2). So, all the problems (1), (2), (4) and (5) are
equivalent.

REMARK 1. From the proof of Theorem 1 it follows that the following
implications hold without any assumptions of the images of Ti :

(5)�⇒ (2)�⇒ (1)�⇒ (4).

The additional assumptions in Theorem 1 were used only for establishing
the reverse implication (4)⇒(5).

Note that problem (4) is set-valued even if T is a single-valued map-
ping, however, it does not contain any explicit parameters. Thus, we can
now study VVIs (1) and (2) with the help of results obtained for scalar
set-valued VIs.

For instance, gap functions are a very useful tool for investigating scalar and
vector VIs. They replace the initial problem with an optimization problem; see
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e.g. [1, 3, 8]. Note that VVI is usually replaced with a vector optimization prob-
lem whereas Theorem 1 enables us to make use of a scalar one.

Let us consider the scalar function

ϕ(x)= inf
f∈F(x)

sup
y∈K

〈f, x−y〉. (6)

PROPOSITION 2. Let all the assumptions of Theorem 1 hold. Then:

(i) ϕ(x)�0 ∀x ∈K;
(ii) ϕ(x∗)=0 f or x∗ ∈K⇐⇒x∗ ∈Ks =Kw=K∗.

Proof. Since 〈f, y−y〉=0, assertion (i) is obviously true. If x∗ solves (5),
then supy∈K〈f ∗, x∗ −y〉� 0 for some f ∗ ∈F(x∗), hence ϕ(x∗)� 0. From (i)
it now follows that ϕ(x∗)=0. Conversely, if x∗ ∈K and ϕ(x∗)=0, then there
exists an element f ∗ ∈F(x∗) such that supy∈K〈f ∗, x∗ −y〉=0, hence

〈f ∗, x∗ −y〉�0 ∀y ∈K,

i.e. x∗ solves (5). Using now Theorem 1, we see that assertion (ii) is also
true.

Note that ϕ in (6) is nothing but the primal gap function (see e.g. [2,
p. 329]) for set-valued VI (5). We now conclude that ϕ can serve as a gap
function for VVI (1).

THEOREM 2. Let all the assumptions of Theorem 1 hold. Then VVI (1) is
equivalent to the optimization problem:

min
x∈K

→ϕ(x).

The proof of this assertion follows directly from Proposition 2. So, each
VVI can be in principle replaced with a scalar optimization problem.

Let us now consider the weak Pareto vector optimization problem (VOP
for short):

min
x∈K

→P ψ(x), (7)

that is, find an element x∗ ∈K such that there is no element x in K with
the property: ψ(x)−ψ(x∗)�intC 0, where ψ :K→Rm is a continuous map-
ping with convex components ψi :K→R, i= 1, . . . ,m. It is not so easy to
find an equivalent scalar convex optimization problem for VOP (7); see e.g.
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[9], nevertheless it is well known (see e.g. [11, Theorem 2.2.2]) that a point
x∗ ∈K solves (7) if and only if it solves the scalar optimization problem

min
x∈K

→〈µ,ψ(x)〉

for some µ∈Rn+,µ =0. Writing the optimality conditions for this problem,
we obtain an equivalence result between VOP and VI.

PROPOSITION 3. VOP (7) is equivalent to VI (5), where F is defined by (3)
and Ti(x)= ∂ψi(x) for i=1, . . . ,m.

Thus, convex VOP can be replaced with a scalar VI, however, its cost
mapping may be non-monotone in general. Again, VI (5) is multivalued
even in the case where ψ is a differentiable mapping.

If the feasible set K is determined by (nonlinear) convex constraints, we
can apply an analogue of the Karush-Kuhn-Tucker theorem to VI (5) and
obtain a variant of this theorem in the vector case; see e.g. [11, Chapter 2].
Hence, studying VI of form (5), (3) can be useful in the theory of vector
optimization.

3. Applications to Vector Equilibria

In this section, we consider possible ways of application of the scalariza-
tion approach presented to some problems of finding vector equilibria.

First we consider a vector network equilibrium problem, which extends
the scalar one; see [5, 12] and references therein. Namely, let us consider a
transportation network given by a set of nodes N and a set of arcs or links
A. Some pairs of nodes are connected by paths; an O-D pair represents
origin and destination of a path. Let I be a set of indices corresponding to
all the O-D pairs, and, for each i ∈ I, Pi denotes a set of indices of differ-
ent paths joining the ith pair and di > 0 denotes the fixed demand value
of the traffic flow between the nodes of the ith O-D pair. Set h= (hi |i ∈ I ),
where hi = (hp|p ∈ Pi) is a path-flow vector for the ith pair, hence h∈Rn
where n=∑

i∈I |Pi |. The feasible set of flow vectors can be defined as fol-
lows

H =
{

h|h �0,
∑

p∈Pi
hp=di, i ∈ I

}
.

Clearly, H is a convex and compact subset of Rn. A path flow vector h
induces a flow va on each arc a∈A given by va =∑

i∈I
∑

p∈Pi δaphp, where
δap =1 if the arc a belongs to path p and δap =0 otherwise. The link flow
vector v= (va|a∈A) in turn induces a travel cost ca(v)= (c1

a(v), . . . , c
m
a (v))∈
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Rm++ for each arc a, which is assumed to be vector-valued. Here Rm++
denotes the interior of Rm+ , i.e.

Rm++ ={y ∈Rm|yi >0 i=1, . . . ,m}.

Hence, given a path flow vector h, one can compute the vector of path
costs as follows:

gp(h)=
∑

a∈A

δapca(v).

By definition (see e.g. [12]), a flow h∗ ∈H is said to be in vector equilibrium
if

∀i ∈ I, ∀p,q ∈Pi : gq(h∗)−gp(h∗)�Rm++ 0⇒hq =0.

The following sufficient condition for a flow to be in vector equilibrium
was established in [12, Proposition 2.2].

PROPOSITION 4. The flow h∗ ∈H is in vector equilibrium if

G(h∗)(h −h∗)�Rm++ 0 ∀h∈H, (8)

where

G(h)= (gp(h)|p∈Pi, i ∈ I ).

Clearly, (8) is a particular case of VVI (1) (or (2)) with the single-valued
cost mapping G. Using the results of Section 2, we now give an equivalent
scalar reformulation of problem (8). For each flow vector h ∈H , we set

F(h)= conv{Gl(h)}l=1,... ,m,

thus defining the mapping F :H → 2R
n

. Now, combining Theorem 1 and
Proposition 4, we obtain the following sufficient condition.

THEOREM 3. The flow h∗ ∈H is in vector equilibrium if

∃f ∗ ∈F(h∗) : 〈f ∗,h −h∗〉�0 ∀h ∈H. (9)

At the same time, the scalar VI (9) can be replaced with the equivalent
equilibrium conditions.



524 I.V. KONNOV

PROPOSITION 5. VI (9) is equivalent to the following set of conditions:

h∗ ∈H,∃µi ∈R, i ∈ I, and ∃f ∗ ∈F(h∗) : f ∗
p

{ =µi if h∗
p >0,

�µi if h∗
p =0; ∀p∈Pi, i ∈ I.

This property can be established along the same lines as its well-known
single-valued analogue; see e.g. [10, Chapter 4].

Note that the sufficient equilibrium conditions in Theorem 3 and Prop-
osition 5 are similar to the parametric scalar conditions from [5], however,
they do not involve any explicit parameters so that their analysis becomes
much simpler, since we do not consider an infinite set of scalar problems
but a single set-valued VI.

We now consider a vector migration equilibrium model, which can be
regarded as an extension of the scalar model from [10, Section 5.2]. More
precisely, we will take a somewhat simplified version of the model in [10]
as a basis, considering for brevity the case where the population belongs
to the single class.

The model involves a set of nodes (locations) N, for each i ∈N, bi denotes
the initial fixed population in location i. Let hij denote the value of the
migration flow from origin i to destination j , and let xi denote the current
population in location i. We can associate with each location i the utility ui
and with each pair of locations i,j the migration cost cij . Usually, both val-
ues ui and cij are assumed to be scalar, however, it is much more natural to
assume that they are vectors because of presence of various different factors
which are taken into account, so that it is not too easy to give a unique value
which reflects all these factors. So, we suppose that ui= (u1

i , . . . , u
m
i )∈Rm and

cij = (c1
ij , . . . , c

m
ij )∈Rm for all i, j ∈N. Set x = (xi | i∈N) and h= (hij | i, j ∈N),

then the feasible set can be defined as follows:

H =
{
(x,h)|h �0,

∑

j =i
hij �bi, xi =bi +

∑

j =i
hji −

∑

j =i
hij , ∀i ∈N

}
. (10)

The rules in (10) reflect the conservation of flows and prevent any chain
migration. Also, clearly, the migration flow has to be non-negative.

The equilibrium conditions for the scalar migration model are more
complicated than those in network equilibrium models. For this reason, it
is not so easy to suggest a suitable extension for the vector case. However,
our scalarization approach admits an equivalent scalar set-valued formula-
tion of vector problems and we start from such a formulation of the migra-
tion model.

We suppose that the utility depends on the population, i.e. ui=ui(x), and
that the migration cost depends on the migration flows, i.e. cij =cij (h). Set

t(x,h)= (u(x), c(h)) and G(x,h)= conv{t l(x,h)}l=1,... ,m,
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then, for each g ∈G(x,h), we have g = (v,w)∈Rn×Rn2
, where n=|N|. We

say that a pair (x∗,h∗)∈H is in vector equilibrium if

ui(x∗)−uj (x∗)+ cij (h∗)+µie �Rm++ 0⇒h∗
ij =0 (11)

for all i, j ∈N, where e = (1, . . . ,1)∈Rm, and

µi






�0 if
∑
s =i
h∗
is =bi,

=0 if
∑
s =i
h∗
is <bi,

(12)

for each i ∈ N. We say that a pair (x∗,h∗)∈H is in w-equilibrium if there
is an element g∗ = (v∗,w∗)∈G(x∗,h∗) such that

v∗
i −v∗

j +w∗
ij +µi

{=0 if h∗
ij >0,

�0 if h∗
ij =0 (13)

for all i, j ∈N and (12) holds.

PROPOSITION 6. If a pair (x∗,h∗) is in w-equilibrium, it is in equilibrium.

Proof. Clearly, we have to show only that (13) implies (11). If (13) holds,
but there are indices i, j ∈N such that h∗

ij >0 and

u∗
i −u∗

j + c∗
ij +µie �Rm++ 0

then (13) yields
∑m

s=1 τs [u
∗,s
i − u

∗,s
j + c

∗,s
ij + µi ] = 0 for some non-negative

numbers τs such that
∑m

s=1 τs = 1, which contradicts the strict inequality
above.

So, we can make use of sufficient conditions (13), (12) for verifying the
vector equilibrium. However, these conditions can be equivalently rewritten
as a set-valued VI as the following proposition states.

PROPOSITION 7. A pair (x∗,h∗) is in w-equilibrium if and only if

∃g∗ = (v∗,w∗)∈G(x∗,h∗) : 〈v∗,x∗ −x〉+〈w∗,h −h∗〉�0 ∀(x,h)∈H.
(14)

The proof is almost the same as that in the single-valued case; see e.g.
[10, Theorem 5.2].

It is easy to see that VI (14) is a particular case of VI (5). Hence, using
Theorem 1, we can give an equilibrium condition in the form of VVI.
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THEOREM 4. A pair (x∗,h∗)∈H is in w-equilibrium if and only if

∑

i∈N

(x∗
i −xi)ui(x∗)+

∑

i∈N

∑

j∈N

(hij −h∗
ij )cij (h

∗)�Rm++ 0 ∀(x,h)∈H. (15)

Clearly, problem (10) is a particular case of VVI (1) (or (2)). Now, Com-
bining Proposition 6 with Proposition 7 and Theorem 4, we give the other
explicit versions of the sufficient condition.

COROLLARY 1. A pair (x∗,h∗) is in vector equilibrium if it solves either
VI (14) or VVI (10).

Thus, the scalarization approach presented gives rather a flexible tool for
studying vector equilibrium problems. In fact, it enables one to choose a
suitable kind of problem for further investigation and the corresponding
scalar problem does not contain parameters explicitly thus admitting scalar
formulations for complicated vector equilibrium problems.

It should be also noted that both the vector equilibrium problems above
can be extended in several directions. For instance, we can replace fixed
demands with elastic ones in the vector network equilibrium problem.
Next, we can consider the more general cases of vector migration equi-
librium problem which admit several classes of population in locations
or chain migration. The scalar versions of these models are described in
[10, Chapters 4 and 5]. Clearly, considering these conditions leads to more
complicated models, however the essence of the approach is not changed.
Namely, the new models will represent slight modifications of the previous
ones.
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